Word2Vec: 一种词向量的训练方法

前边我们貌似提出了一个对词向量比较好的期望,但是如何去学习这些词向量,达到这种效果呢?这就是本节讨论的话题,本节将通过Word2Vec为大家讲解词向量的训练方法。

简单地讲,Word2Vec是建模了一个单词预测的任务,通过这个任务来学习词向量。假设有这样一句话Pineapples are spiked and yellow,现在假设spiked这个单词被删掉了,现在要预测这个位置原本的单词是什么。

Word2Vec本身就是在建模这个单词预测任务,当这个单词预测任务训练完成之后,那每个单词对应的词向量也就训练好了。下边我们来具体看看吧。

1. Word2Vec概述

在正式介绍之前,我们先来科普一下Word2Vec,Word2vec是2013年被Mikolov提出来的词向量训练算法,在论文中作者提到了两种word2vec的具体实现方式:连续词袋模型CBOWSkip-gram,如图4所示。

image-20210430163430455

图4 CBOW和Skip-gram的对比

图4中使用了这句话作为例子:Pineapples are spiked and yellow,在这句话中假设中心词是spiked,这个单词的上下文是其他单词:Pineapples are and yellow。

连续词袋模型CBOW的建模方式是使用上下文单词来预测spiked这个单词,当然图片上展示的是spikey,相当于是预测错了。Skip-gram正好反过来,它是通过中心词来预测上下文。

一般来说,CBOWSkip-garm训练快且更加稳定一些,然而,Skip-garm不会刻意地回避生僻词(即出现频率比较低的词),比CBOW能够更好地处理生僻词。在本节呢,我们将以Skip-garm的方式讨论词向量的训练过程。

2. Skip-gram训练词向量原理

前边我们说到,Skip-gram是通过中心词来预测上下文。我们还是以Pineapples are spiked and yellow为例进行讲解,如图5所示,中心词是spiked,上下文是Pineapples are and yellow,在Skip-gram中,上下文是我们要预测的词,因此这些词也叫目标词。

image-20210430172831782

图5 Skip-gram原理图

我们来看看Skip-garm具体是怎么工作的, 首先skip-gram是使用中心词来预测上下文,即利用spiked这个单词来预测 pineapples are and yellow这4个单词,但是训练过程中,这个预测结果很有可能并不是这4个单词,但是没关系,我们会使用这4个单词和预测的单词进行计算损失,通过损失的方式将正确的这4个单词的信息,使用梯度信息反向传播中心词spiked,这样在spiked单词在下次预测的时候,就会更准确一点。

总结一下,在训练过程中通过梯度的方式,将上下文单词的语义传入到了中心词的表示中,即使用了spiked的上下文来训练了spiked的词向量。但是我们来看spiked,和prickly这两个单词,他们的意思都是有刺,多刺的意思,那么真实的文本语料中,他们的上下文大概率也是差不多的,这样通过差不多的上下文去训练这个中心词,那么自然具有相同语义的词的词向量距离会比较近。

3. Skip-gram网络结构

前边我们提到,Word2Vec是建模了一个单词预测的任务,通过这个任务来学习词向量。同时呢,Skip-gram是一种以中心词预测上下文的方式进行的,那我们来看看它的网络结构长什么样子,如图6所示。

image-20210430173826772

图6 Skip-gram网络结构

Skip-gram的网络结构共包含三层:输入层,隐藏层和输出层。它的处理步骤是这样的:

  1. 输入层接收shape为\([1,V]\)的one-hot向量\(x\),其中\(V\)代表词表中单词的数量,这个one-hot向量就是上边提到的中心词。

  2. 隐藏层包含一个shape为\([V,N]\)的参数矩阵\(W_1\),其中这个\(N\)代表词向量的维度,\(W_1\)就是word embedding 矩阵,即我们要学习的词向量。将输入的one-hot向量\(x\)\(W_1\)相乘,便可得到一个shape为\([1, N]\)的向量,即该输入单词对应的词向量\(e\)

  3. 输出层包含一个shape为\([N,V]\)的参数矩阵\(W_2\),将隐藏层输出的\(e\)\(W_2\)相乘,便可以得到shape为\([1,V]\)的向量\(r\),内部的数值分别代表每个候选词的打分,使用softmax函数,对这些打分进行归一化,即得到中心词的预测各个单词的概率。

这是一种比较理想的实现方式,但是这里有两个问题:

  1. 这个输入向量是个one-hot编码的方式,只有一个元素为1,其他全是0,是个极其稀疏的向量,假设它第2个位置为1,它和word embedding相乘,便可获得word embedding矩阵的第二行的数据。那么我们知道这个规律,直接通过访存的方式直接获取就可以了,不需要进行矩阵相乘。

  2. 在获取了输入单词对应的词向量\(e\)后,它是一个\([1,N]\)向量。接下来,会使用这个向量和另外一个大的矩阵\(W_2\)进行相乘,最终会获得一个1*V的向量,然后对这个向量进行softmax,可以看到这个向量具有词表的长度,对这么长的向量进行softmax本身也是一个极其消耗资源的事情。

第1个问题解决起来比较简单,我们主要来看第2个问题,那怎么解决呢?直观的想法是我们不要去生成这么多的类别,所以采用了一个负采样的策略,将海量分类转化成了二分类,来缓解这个问题,下我们来看看它具体是怎么做的。

4. 负采样解决大规模分类问题

image-20210430180824018

图7 使用负采样策略训练Skip-gram模型

还是以Pineapples are spiked and yellow为例进行讲解,如图7所示,其中中心词是spiked和上下文词是正样本Pineapples are and yellow,这里这个正样本代表该词是中心词的上下文。

以正样本单词Pineapples为例,之前的做法是在使用softmax学习时,需要最大化Pineapples的推理概率,同时最小化其他词表中词的推理概率。之所以计算缓慢,是因为需要对词表中的所有词都计算一遍。然而我们还可以使用另一种方法,就是随机从词表中选择几个代表词,通过最小化这几个代表词的概率,去近似最小化整体的预测概率。

例如,先指定一个中心词(spiked)和一个目标词正样本(Pineapples),再随机在词表中采样几个目标词负样本(如”dog,house”等)。

有了这些正负样本,我们的skip-gram模型就变成了一个二分类任务。对于目标词正样本,我们需要最大化它的预测概率;对于目标词负样本,我们需要最小化它的预测概率。通过这种方式,我们就可以完成计算加速。这个做法就是负采样

我们再回到图7看一看整体的训练流程是怎么样的。图7中相当于有两个词向量矩阵:黄色的和灰色的,他们的shape都是一样的。整体的流程大概是这样的。

  1. 获取中心词spiked的正负样本(正负样本是目标词),这里一般会设定个固定的窗口,比如中心词前后3个词算是中心词的上下文(即正样本);

  2. 获取对应词的词向量,其中中心词从黄色的向量矩阵中获取词向量,目标词从灰色的向量矩阵中获取词向量。

  3. 将中心词和目标词的词向量进行点积并经过sigmoid函数,我们知道sigmoid是可以用于2分类的函数,通过这种方式来预测中心词和目标词是否具有上下文关系。

  4. 将预测的结果和标签使用交叉熵计算损失值,并计算梯度进行反向迭代,优化参数。

经过这个训练的方式,我们就可以训练出我们想要的词向量,但图7中包含两个词向量矩阵(黄色的和灰色的),一般是将中心词对应的词向量矩阵(黄色的)作为正式训练出的词向量。

恭喜,看到这里我想你已经明白Skip-gram大致是如何训练词向量了。